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A procedure for adjusting the gains in an a- filter used in tracking air targets by searc-
radars is given for the case in which the track updates appear randomly in time. The filter
gains are given by a = 1 - e-94JoT and I 1 + e-: - 2 - cos C,,dT where , co, -
and Wd are constants and T is the randomly vayirg time be-tween updates. Using this gain
adjustment procedure, we found that the tracking errors are smaller than when the gains x
and j are held constant for tracks which are randomly uodated.
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ABSTACT

A procedure for adjusting the pins in u a-O Titer ued in tra-&
ing air targets by saimch radars is given for the case in which the
trsck updates appear randornly in time. The filter gains are given by
a = I -- e"2JuoT z-',d P = I + e-2Eo4T - 2 e-ti°¢,T Cos walt where E.
wo, and i-o-d ar contat and T is the randomly varying fim be-
tween updates. Usng this gain adjustment procedure, we foud that
the tzaci~ng err tre smaller than whe-n the gains a and fA arem d
constant ,,)r tracks H- ch ame randmy upx'de

MIurript submitted Auttust 21. 1973.
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C-M-FN ADJUSTMENT OF AN ALPHA-BETA FILTER
WITH RANDOM UPDATES

INTRODUCTION

Search r- ars sometimes track air targets by use of an a-0 filter I!]. The filter
computes the target's velocity from the measured position, smoothes both the p, stion
and velocity, and finally predicts the position the 1arget will have at the next loGI, of the
radar. In most of these cases a uniforin update time can be assumed and such a system
can be analyzed w;th standard techniques involving sampled-data systems .2-41.

Let us consier merging the target reports from a number of radars. The radars are
assumed to rotate at different speeds, a=d the detection capability of any givtn radar on
a target depends on many environmental and radar factors. For these reasons the track
updates for a given target might be thought of as appearing randomly in time. Under
some circumstances a phased-array 'adar could also be modeled with a random update
time In thzs report we analyze the -- P filter by using the postulated random updat-',
and we consider a mean <- adji.sting the filter's gain so as to improve its system raponse.

REVIEW OF THE o-P FILTER

The reviw of the a-B filter with constant update times includes an examinat-on of
the transfer function, its properties. and the response of the system in both the mean
and var'iance. We begin by defining the a-8 filter [1):

x.|k) XP(k1 + alx,(k) - x(k)}. (1)

v-,{) vs 1,: ) + (Pjr [x,,1k) -xp(k)i. (2)

xp(k+l) xs k) + v,(k)T, (3)

where

x,(k) =moothed position,

urjk) smoothed velocity,

x,(k) pirdirted position,

x,, 1k.) measured postion.,

T sampling period (consunt until stcified otherwvise).

a, P systen gains.
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We obtain a convenient form of the fiiter equations by substituting (3) into (1) and (2).
obtaining

and

(k Y

Applying the z tranform 12,3) to (4) and (5), we find that the transfer functions of the
system are

azlz + (0-a)/aJ (6)
z 2 - z(2-a-) + (1-a)(

(P/7) z(z - '1)
HI ,,(z)/Xg(2) = W7)

z 2 - z(2-a-p) 4 (1---)

(a+f)ziz - tai(a+0) 1)
A2 - z(2- a -) + (1 -a)

By setting z = eA't we find ..he frequency responses for a typical system (Fig. 1). The
smoothed position is obtainev by passing the measured position through a low-pasm. filter.
and the smoothed velocity is obtained by differertiating the measured position. The
sampler itself acts as a low-pass filter, and any excitation whose frequency rg, is above
lIT is simply folded into the frequency range from zero to 1IT. The norinally used
vraltes of a and P are shown in Fig. 2. This is obtained by examining the po~e aid zero
locations of the transfer functions (6). (7), and (8). The transfer functions (6', (7), (8)
are placed into standard notation for a second-order sy.-tem:

H(.= -,two (9)
Z -- 2z e OT S dT 4 C- 4kwo T

Equating terms in the denominator of (9) with the denominators of (6), (7). and (8), we
obtain

a = 1- e (10)

and

p = i . e&°( °T - 2e-Tu Cos C.dT, (11)

where is the damping coefficient of the second-order system. w 0 is the natr tl frequency.
and .-d is the damped natural frequency. Equations (10) and (11) will be -d later.

Before observing the system r'sxnose, we consider incorporating a constar.,-ra!e high-
speed sampler in the system and defining a m(k)as
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4 BFN Kt CANTRELL
4 xn(k) = u(tk) + w(:f), (12)

with w(tk) samed to be w..e stationary Gawasian noise having zero mean and having
variance 0.o.presenting measurement eror of the, radar and with u(t4) a&-umed to be
samples fran a deterministi tat-et trajectory. A M-ock diarm-n of the fit is shown in
Prg. 3. We define the natrics in qs& (4 and (5) as

(- i- (1-l) -T

r]

8(7)

LVSkk)

C(i) = i i-A},

C i, i':
GO, n) *4k)xt

P*W-! SAS.L

F'W€ 3-An a-0 filer incorporating a voc-tnt-n-e higlhspccd aampter

where A is the time between samples of the ih-speed samph r. We then write the filter
equations (4) and (5) as

Xlk) = A(T X(k- 2) + B(TO)ultk) + w(t&) 13)

and A

x. p(kT+ .A) = C(i) X(k), (14)

whte i 1, 2. 3... T/A with TA being an intege -

The response of the filter is obtained in terms of mieis and covariarces. The equa-
tions decrbing the covarian-es are of the form j4).

P(k1) = A(T) P(k) A'() + Bm(7oB'(T (15)

:-~~w c--k} P= (

F.,.k) ?x.,s (k)j
P(k-. =

in which

I
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JX,(ki = covlx,(k) x 1)][ The covariance equations for the a-! filter are derived waing (13), (14), srd (15):
--'_

P (k)I I1 -cr)2  (1-a)2  (1-a)2T2 Ix.k-1i
I I T I

*( f(- a)IT 1-a)(1-2l) (I1-a)(1-)TIIP (k - I)!

P ~ -2(l.0)7

' (k)1 1P I
Ii I

+ , - n1- ;

fori 1 2 TI Ther st. ' .stt souino 111i bandb :tn ~ 1

i '" Lo.v-

foric,= ,2,.., T/A. Thesteul-state solution of (15) is ot--ne by setuingP h i;

2$-3al.2a2 (18)
a(4 - 2a - 0) 1

12a= -  a3 + 219 a;

a4 - 2a-0)

We define Co'-D -be

P,;(kT iA(~21)

Combining (17) through (21). we n-o the --rm-ized vmiance of the predicted position
0 ( TIA) a- the updatc tune of tefiter as a functin of and I (Fig. 4). fn FW. 5

we plot OD2 (l .oe 3 tm c and U t-.how the intrasample ripple in the wiance of the
predictkd position.

We now consider the mean response of the filter. A tarpet is flown in a circle at a
large distance fom the radar. (Ths tr.ijectory represents a tining target, and the full
circte is used -uch that a steady state h- obtained.) The range variation as a function of
time i 151A

Lit = I- (zja ,) cos (aJu)f (22)

where RO is the range to the center of chit (ft). a., is -he normal acveleration (fti),
'aid e is the wbity of target (ft;). W, en the filter is excited by samples of u(Q) taken

_ _ _ _ _
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.'- : I

E- "Fig. 7-Prnbability density of a sampling interval T

SAMPLING P .RIOD T

The covariances of the system states an .xt considered. Considering the response
only due to w(tk), we find X(k) = 0, where the bar denotes expected value. As shown
in Appendix A, the recursive equation

Plk) = A(T) P(k- 1)A'(T) + B(T)ou.- B(T) (26)

can be used to find the covariances P(k) -1 .c to :(tk). The covariance equations foz the
oi-P filter are

1(h- )2  2(1 - CC)2 T (1- a) 2 T2  P,x,(k 11

Pv( F 1_ _)/ _I -1t( 0 t I )TP, k-1
P .k] (61-r,2  - 20(l - P)T (1 - 3)2 J LPV.Ak.. -I1

;-2
+ a-"T 1 0 2 (27)

ex,(th. ) Pxx,(k) + 2TPx.,(k) + T2 p,,,(,). (28)

Since a and are constant, the coefficients in Eqs. (27) and (28) are

d+e
1 (lid) f TdT = (d/2) + e, (29)

T2 = (d 2/3) + de + E2 , (30)

/T = [Qn(d+e) - Rnej/d, (31)

liT2 = 1!(e(T+e)j . (32)

As the results of using the coefficients (29) through (32) in (27. and (28), the normalized
vrriance of the predicted position I

rI

-V-- • ---
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Q2 2

S xx(tk-l)0w (33)

~is shown in Fig. 8 as a functlon of e for steady-st-te conditions. These results were also
computed using Nionte Carlo techniques. Observing Fig. 3, we find that 002 inrae
rapidly for small values of e. This can be explained as follows: In a uniform update
system, if the update time becomes short, the variance in the velocity increases rapidly.
However, this effect is diirectly canceled in the variance of the predicted position, because
one needs '.o predict only over this same small interval of time. In the random update
system the 6ime between updates can first be short, creating a large error in velocity.
This can then be followed by a long time interval in which the target's position must be
estimated using the poor velocity estimate. Therefore a02 increases under these condi-
tions. A method of avoiding these large errors. is next cirsiderc<.

102r

b

= C0821

001 01 1 o

F&8- Normalzed predic4--l pmsitk- aracea
function of e with, d 6 secondTs !or afxdgi

ot-0 ter

Variable-(G'in a-P Filter

The method of avoiding lar-ge errors in the random update system adjusts the system
gains o and j3 according to (10) ant i) where T is the random update time. 'The
covariance equations considering only w(tkl as ar. excitation is again given by Eqs. (27)
and (28). The coefficients are computed by numerical integration with the use of the
uniform probability density given in Fig. 7. The normalized variance of the predicted
position (33) is shown in Fig. 9 as a function of e. We find that u0 is not a strong
function of e, as was the case in Fig. 3. This can be explained as follows: When the
time interval between samples becomes short, ca and 0 approach 0. thus smoothing the
data heavily and negating the rise in velocity errors. As the time between samples be-
comes long, a and 03 approach 1 and ini effct no smoot-hing is used. The gain adjustments



10 BFN H. CANTRELL

105

.
lo0 2

N 0 8OUND FO, I.ARGE

:0314

w,:0 0 31 4

001 01 1 0 '00
(SECONDS'

Fig. 9-Normalized pr'dicted positic. variance as a
function of c with = 0.4 and d - 6 .ecord for a
vaiabli-gain a-0 Mter

(10) and (11) appear to maintain a rather cnnstant o under the random sampling dis-
tribution proposed.

We now investigate the effects of the excitation u(tk) and X(0) on the system re-
spon-e using the gains (10) and (11). We will find the effect of u(tk and X(0) on the
randomly updated filter by using simulation procedures. (Because EItu(tj) -- u(tj)I
u(t) - u(t)]l is not G for all i * j, ar analytic formulation appears to be very difficult)

An approach to the prOblem would be to find the mean and covariance of the predicted
position at the Rth sample. However the kth sample appears randomly in time. A more
meaningful calculation would be to find these quantities at a given instant of time. Con-
sider the constant-rate high-speed sampler defined in Fig 3. Under any randomly samnpled
excitation the filter response can be found at a given sample of the high-speed constant-
rate sampler which corresponds to a given instant of time. The quantity A is made smaller
than E such that the effect of (-ch random sample can be easily seen. The adjustable-gain
filter is excited by taking random samples, dis-tributp, - -'..own in Fig. 7, from a sinusoid,
given by Eq. (22). Over many trials the mean and variance of Xp is computed at each
switch closing of the constant-rate high-speed sampler. The results are shown in Figs. 10
and 11. Even though u(t) is a deterministic process, under random sampling the filter
output is a random variable. One finds that if the filter has a sufficient bandwidth, the
filter with adjustable gains (10) and (11) follows u(t) quite well (Fig. 11).

The reason xp follows u(t) fairly well with the Pdjustable-gain filter may be explained
as follows: As the time between samples becomes short, the system smoothes heavily,
which counteracts the increase in bandwidth due to the rapid sampling. Conversely, as
the time between samples becomes large. the system lightly smoothes, counteracting the
sluggishness induced by the long time between tamples. In fact the system attempts to
maintain a constant bandwidth, and if this bandwidth is wider Lhan the frequency content
of the signal, then xp follows u(t) fairly closely. This system behaves like a continuous
syitem of fixed bandwidth being excited witl inputs appearing randomly in time.
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The total fdter response in both the mean and covarisince can be obtained by super-
imposing the effects of w(t) and [X(O). u(t)]. The filter design would adiust and wc
such that xp followei u(t) as close!y as possible while minimizing Px., which is com-•P P
posed of the variance Pxordue to w(t) plus &e variance Px due u I).

SUMARY

The constant-coefficient a-.l filter when randomly updated was found Lo have large
erroris in the variance under certain condition, namely, a short time between updates
followed by a long time between updates. To circumvent this problem,, variable gains

- -  ° and i 1 + e-z °T - 2 .- T ",'as wdT, where Z, jo, and Wd are
constaw and T is the randomly varying time between updates, were postulated. Using
these gains, one found that the variance in the predicted position remained at reasonably
low values under the same conditions. Also it was shown that the variable-gain filter's
response to a gi.vn trajectory could achieve a reasonable small error.

Although the gain adjustments were simply postulated and shown to work well with
the em.-oles cited, no exact justifiLazion for their use -w given However arguments
were given as to why the system seemed to work well.
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FORMULATIONS OF MEAN £ ND COV..RIANCE EQUATIONS

The purpose of this appendix is to outli- a procedure for showing that superposi-
tion can be u-ed in computing the means and covariances of (23) and to outline a method
of obtaining (26). We begin by writing the sysem equations (23) using a convenient
form.

X(k) A X(k - 1) + Bju(tk) + w(tk)]. (All

where

A = random variable which is identically distributed and independent from
sample to sample.

B random variable which is identically distributed and independent from
sample io sample.

u(tk) = iadom samples from an arbitrary function,

X(O) = initial condition.
Ztk) zero-mean white Gaussian noise with variance a 2

Recursively solVing (All, we can obtain the solution in the form

X(k) gSA. B, X(O). u"lk), wat)] . (A2)

The mean M(k) an" covariance P(n) of X(k) are comptted using the probability density
(25). The means M'(k) and M'(k) and the cov-cdaitces W'(k) an6 P"(k) are competed in
the same -manner by first using X(0) and u(t&) as excitations and then using w(:k) as an
excitation. Superposition is then shown to hold by noting

M(k) W M(k) KVM(k), (A3)

P(k) W P(k) +P"(k) . ;A4)

The computation is straightforward but quite lengthy.

We compute (26) by noting the mean vlue of X(k! excit. witLh only w(t ) ! 0
and forming the covariance:

X(k) k) - AX(k - 1 X'(k - iA + 8 w(tt) w(t) B'

+ AX(k- 1)'xi; 4 Bwfi,) X(h- 1)A. iAS

13
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±where the bar denots expected value and the prime denotes baspose Becse of the
independence.auuraed, (AS) becomes

Xik) X'(k) A AX k- 1) X'(k -1) A! + B w(t&) w ith,

+ A X(k-1)40w(jk)B0' + Bz(!k) X 1) At (A6)

Defining P(k) X(k) X'(k) and noting XQk - 1) w(tk) =0. we obtain

P(k) A AP(h -1) A' + B ow2 B (i7)


